Week 4: Compound Interest

- MA120: Personal Finance

১ Instructor: Rebecca Lombardo

- Week of April 20, 2015

Review of Simple Interest:

I = prt

1.) Luther puts $\$ 300$ in a savings account paying 0.53% interest. How long will it take to earn $\$ 50$ in interest?
2.) Tanesha is looking to put $\$ 150$ into a savings account. What interest rate does she need a savings account to have in order to have a total of \$200 in the bank account 1 year from now?

Review of Simple Interest:
 I = prt

1.) Luther puts $\$ 300$ in a savings account paying 0.53% interest. How long will it take to earn $\$ 50$ in interest?
$I=p r t$
$\mathrm{t}=\mathrm{l} / \mathrm{pr}$
$\mathrm{t}=\$ 50 / \$ 300 \times 0.53 \%$
$\mathrm{t}=50 /(300 \times 0.0053)$
$t=31.34 \mathrm{yrs}$
2.) Tanesha is looking to put $\$ 150$ into a savings account. What interest rate does she need a savings account to have in order to have a total of \$200 in the bank account 1 year from now?

Review of Simple Interest:
 I = prt

1.) Luther puts $\$ 300$ in a savings account paying 0.53% interest. How long will it take to earn $\$ 50$ in interest?
$I=p r t$
$\mathrm{t}=\mathrm{l} / \mathrm{pr}$
$\mathrm{t}=\$ 50 / \$ 300 \times 0.53 \%$
$\mathrm{t}=50 /(300 \times 0.0053)$
$t=31.34 \mathrm{yrs}$
2.) Tanesha is looking to put $\$ 150$ into a savings account. What interest rate does she need a savings account to have in order to have a total of \$200 in the bank account 1 year from now?

$$
\begin{aligned}
& r=I / p t \quad l=\$ 200-\$ 150=\$ 50 \\
& r=\$ 50 /(\$ 150 \times 1) \\
& r=0.333=\underline{33.3 \%}
\end{aligned}
$$

Today's Objective

- Students will use the compound interest formula to calculate the interest earned and total money in a savings account.

Compound Interest

Compound Interest

- Interest on savings account - if not withdrawn is added to the principal after a set amount of time. This forms a new principal. The new principal earns interest for the next period of time, and then this new amount of interest gets added to form another new principal. At the end of each period of time, we have a new, higher principal! This process is known as compound interest.

- Interest is compounded (added to the principal) after a set constant amount of time...usually at the end of each year, half year, or quarter year.

Time Periods

- Annually
© Semi-annually
- Quarterly

Time Periods

- Annually - once a year
© Semi-annually
- Quarterly

Time Periods

- Annually - once a year
© Semi-annually - 2x a year (every 6 mos)
- Quarterly

Time Periods

- Annually - once a year
- Semi-annually $-2 x$ a year (every 6 mos)
- Quarterly - 4x a year (every 3 mos)

Generally compound interest is applied to man financial products \rightarrow savings accounts, loans, credit cards, life insurance etc.

- In terms of our formula:

$$
\text { Simple Interest: } \quad I=p t r \quad A=p+I
$$

Compound Interest: you must do calculations for A for each year of the loan

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4\% interest rate, and the interest is compounded annually?

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	I = prt	Year End Amount $(\mathbf{A}=\mathbf{I}+\mathbf{p})$

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t$)$	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1		
2					
3					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$I=600 \times 0.04 \times 1=$ $\$ 24$	

2
3

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
$\mathbf{1}$	$\mathbf{\$ 6 0 0}$	0.04	1	$I=600 \times 0.04 \times 1=$ $\$ 24$	$\mathrm{A}=600+24=$ $\$ 624$

2
3

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (i)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(A=I+p)$
1	\$600	0.04	1	$\begin{aligned} & I=600 \times 0.04 \times 1= \\ & \$ 24 \end{aligned}$	$\begin{aligned} & A=600+24= \\ & \$ 624 \end{aligned}$
2	\$624				
3					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$I=600 \times 0.04 \times 1=$ $\mathrm{A}=600$ $\$ 24$	
2624					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (i)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$I=600 \times 0.04 \times 1=$ $\$ 24$	
$2=600+24=$					
$\$ 6624$					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$\mathrm{I}=600 \times 0.04 \times 1=$ $\$ 24$	$\mathrm{A}=600+24=$ $\$ 624$
2	$\$ 624$	0.04	1	$I=624 \times 0.04 \times 1=$ $\$ 24.96$	
3					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$\mathrm{I}=600 \times 0.04 \times 1=$ $\$ 24$	$\mathrm{A}=600+24=$ $\$ 624$
2	$\$ 624$	0.04	1	$I=624 \times 0.04 \times 1=$ $\$ 24.96$	$\$ 648.96$
3					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(A=I+p)$
1	\$600	0.04	1	$\begin{aligned} & I=600 \times 0.04 \times 1= \\ & \$ 24 \end{aligned}$	$\begin{aligned} & A=600+24= \\ & \$ 624 \end{aligned}$
2	\$624	0.04	1	$\begin{aligned} & I=624 \times 0.04 \times 1= \\ & \$ 24.96 \end{aligned}$	\$648.96
3	$\begin{aligned} & \$ 648.9 \\ & 6 \end{aligned}$				

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t$)$	$I=$ prt	Year End Amount $(A=I+p)$
1	$\$ 600$	0.04	1	$I=600 \times 0.04 \times 1=$ $\$ 24$	
2	$\$ 6200+24=$				
$\$ 624$					

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(A=I+p)$
1	\$600	0.04	1	$\begin{aligned} & 1=600 \times 0.04 \times 1= \\ & \$ 24 \end{aligned}$	$\begin{aligned} & \mathrm{A}=600+24= \\ & \$ 624 \end{aligned}$
2	\$624	0.04	1	$\begin{aligned} & I=624 \times 0.04 \times 1= \\ & \$ 24.96 \end{aligned}$	\$648.96
3	$\begin{aligned} & \$ 648.9 \\ & 6 \end{aligned}$	0.04	1	\$25.96	

Compound Interest: Example

- You deposit $\$ 600$ into a savings account. How much money do you have after 3 years if the account has a 4% interest rate, and the interest is compounded annually?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$I=$ prt	Year End $A m o u n t$ $(A=I+p)$
1	$\$ 600$	0.04	1	$I=600 \times 0.04 \times 1=$ $\$ 24$	
$=600+24=$					
$\$ 624$					

Compound Interest: Example

- How much total interest did you earn?

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(A=I+P)$
1	\$600	0.04	1	$\begin{aligned} & I=600 \times 0.04 \times 1= \\ & \$ 24 \end{aligned}$	$\begin{aligned} & A=600+24= \\ & \$ 624 \end{aligned}$
2	\$624	0.04	1	$\begin{aligned} & I=624 \times 0.04 \times 1= \\ & \$ 24.96 \end{aligned}$	\$648.96
3	$\begin{aligned} & \$ 648.9 \\ & 6 \end{aligned}$	0.04	1	\$25.96	\$674.92

Compound Interest: Example

- How much total interest did you earn?

$$
A=I+p \quad \$ 674.92=I+\$ 600
$$

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=\mathrm{prt}$	Year End Amount $(A=I+P)$
1	\$600	0.04	1	$\begin{aligned} & I=600 \times 0.04 \times 1= \\ & \$ 24 \end{aligned}$	$\begin{aligned} & A=600+24= \\ & \$ 624 \end{aligned}$
2	\$624	0.04	1	$\begin{aligned} & I=624 \times 0.04 \times 1= \\ & \$ 24.96 \end{aligned}$	\$648.96
3	$\begin{aligned} & \$ 648.9 \\ & 6 \end{aligned}$	0.04	1	\$25.96	\$674.92

Compound Interest: Example

- How much total interest did you earn?

$$
A=I+p \quad \$ 674.92=I+\$ 600 \quad I=\$ 74.92 \text { over } 3 \mathrm{yrs}
$$

Year \#	Principal (p)	Interest Rate (r)	Time (t$)$	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 600$	0.04	1	$\mathrm{I}=600 \times 0.04 \times 1=$ $\$ 24$	$\mathrm{A}=600+24=$ $\$ 624$
2	$\$ 624$	0.04	1	$I=624 \times 0.04 \times 1=$ $\$ 24.96$	$\$ 648.96$
3	$\$ 648.9$	0.04	1	$\$ 25.96$	$\$ 674.92$
	6				

Problem \#2

2.) You earn $11 / 2 \%$ interest, compounded annually, on your $\$ 2500$ investment.
a) Using the table below, calculate how much your investment will be worth after 3 years. Total I = \$2614.19-2500 = \$114.19

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 2500$				

2
3

Problem \#2

2.) You earn $11 / 2 \%$ interest, compounded annually, on your $\$ 2500$ investment.
a) Using the table below, calculate how much your investment will be worth after 3 years. Total I = \$2614.19-2500 = \$114.19

Year \#	Principal (p)	Interest Rate (r)	Time (t)	I = prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
1	$\$ 2500$	0.015	1	$\$ 37.50$	$\$ 2537.50$
2	$\$ 2537.5$	0.015	1	$\$ 38.06$	$\$ 2575.56$
3	$\$ 2575.5$ 6	0.015	1	$\$ 38.63$	$\$ 2614.19$

Problem \#3

3.) You earn 7.5% interest compounded semi-annually on your \$3000 investment.
a) Using the grid below, create a table to calculate how much your investment will be worth after 2 years.

Problem \#3

3.) You earn 7.5% interest compounded semi-annually on your \$3000 investment.
a) Using the grid below, create a table to calculate how much your investment will be worth after 2 years.

Year \#	Principal (p)	Interest Rate (r)	Time (t)	I prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
0.5 yr	$\$ 3000$	0.075	0.5	$\$ 112.50$	$\$ 3112.50$
1 yr	$\$ 3112.50$	0.075	0.5	$\$$	
1.5 yr					
2 yr					

Problem \#3

3.) You earn 7.5% interest compounded semi-annually on your $\$ 3000$ investment.
a) Using the grid below, create a table to calculate how much your investment will be worth after 2 years.

Year \#	Principal (p)	Interest Rate (r)	Time (t)	$\mathrm{I}=$ prt	Year End Amount $(\mathrm{A}=\mathrm{I}+\mathrm{p})$
0.5 yr	$\$ 3000$	0.075	0.5	$\$ 112.50$	$\$ 3112.50$
1 yr	$\$ 3112.50$	0.075	0.5	$\$ 116.72$	$\$ 3229.22$
1.5 yr	$\$ 3229.22$	0.075	0.5	$\$ 121.10$	$\$ 3350.32$
2 yr	$\$ 3350.32$	0.075	0.5	$\$ 125.64$	$\$ 3475.96$

Problem \#5

5.) You invest $\$ 1250$ at an interest rate of 2.5% compounded quarterly. Calculate how much compound interest you will have earned on this investment after 1 year.

Problem \#5

5.) You invest $\$ 1250$ at an interest rate of 2.5% compounded quarterly. Calculate how much compound interest you will have earned on this investment after 1 year.

Year\#	P	R	T	I = prt	A =I + P
3 mos	$\$ 1250$	0.025	0.25		
6 mos					
9 mos					
12 mos					

Exit Ticket

- Bryan puts $\$ 800$ into a bank account. It earns $3 / 4 \%$ interest semi-annually. How much money will he have after 1 year?

Do Now

- Bryan puts $\$ 800$ into a bank account. It earns $3 / 4 \%$ interest semi-annually. How much money will he have after 1 year?

Today's Objectives

- Students will:
a) Apply the compound interest formula to calculate the amount of money in a savings account after a period of time
b) Find the principal necessary for a savings account with compounded interest, given a specified money goal

Review from Tuesday

- Compound interest - a way of calculating interest, in which you must calculate interest and a new principal after each period of time
- We STILL USE the interest formula $\boldsymbol{I}=\mathrm{pr} \mathrm{t}$
- But there are many more STEPS
- This results in our principals and interest amounts growing... so our money grows more quickly!! ©

Review from Tuesday

- Annually - once a year
- Semi-annually $-2 x$ a year (every 6 mos)
- Quarterly - 4x a year (every 3 mos)

On your own... Please finish the compound interest worksheet and submit

Do Now

- Jovan puts $\$ 100$ in a savings account that pays 2.2% interest compounded quarterly. How much money will Jovan have in his savings account after 9 months?

Do Now

- Jovan puts $\$ 100$ in a savings account that pays 2.2% interest compounded quarterly. How much money will Jovan have in his savings account after 9 months?

Month;:	P	r	t	$I=p r t$	$\mathrm{~A}=\mathrm{I}+\mathrm{p}$
3			0.25		
6					
9					

Do Now

- Jovan puts $\$ 100$ in a savings account that pays 2.2% interest compounded quarterly. How much money will Jovan have in his savings account after 9 months?

Month華	P	r	t	$I=p r t$	$A=I+p$
3	$\$ 100$	0.022	0.25		
6					
9					

Do Now

- Jovan puts $\$ 100$ in a savings account that pays 2.2% interest compounded quarterly. How much money will Jovan have in his savings account after 9 months?

Month\#	P	r	t	I = prt	$\mathrm{A}=\mathrm{I}+\mathrm{p}$
3	\$100	0.022	0.25	\$0.55	\$100.55
6	$\begin{aligned} & \$ 100.5 \\ & 5 \end{aligned}$	0.022	0.25	\$0.55	\$101.10
9	$\$ 101.1$	0.022	0.25	\$0.56	\$101.66

Which is better? Compound or Simple Interest?

- Look at your answer to \#6 on the worksheet...

Simple Interest:

Compound Interest:

Which is better? Compound or Simple Interest?

- Look at your answer to \#6 on the worksheet...

Simple Interest:

$$
I=500 \times 0.005 \times 4=\$ 10 A=500+10=\$ 510
$$

Compound Interest:

Which is better?

 Compound or Simple Interest?

 Compound or Simple Interest?}

- Look at your answer to \#6 on the worksheet...

Simple Interest:

$$
I=500 \times 0.005 \times 4=\$ 10 A=500+10=\$ 510
$$

Compound Interest: $1^{\text {st }} \mathrm{yr}: \mathrm{I}=500 \times 0.005 \times 1=\$ 2.50 \mathrm{~A}=\$ 502.50$

$$
\begin{array}{ll}
2^{\text {nd }} \mathrm{yr}: \quad I=502.50 \times 0.005 \times 1=\$ 2.51 & A=\$ 505.01 \\
3^{\text {rd }} \mathrm{yr}: ~ I=505.01 \times 0.005 \times 1=\$ 2.53 & \mathrm{~A}=\$ 507.54 \\
4^{\text {th }} \mathrm{yr}: \quad \mathrm{I}=507.54 \times 0.005 \times 1=\$ 2.54 & \mathrm{~A}=\$ 510.08
\end{array}
$$

Which is better? Compound or Simple Interest?

- Look at your answer to \#6 on the worksheet...

Simple Interest:
$\$ 510$ after 3 years
Compound Interest: $\$ 510.08$ after 3 years

Which is better?

Compound or Simple Interest?

An easier way to do Compound Interest

Amount

- $A=$ total money in account
- $\mathrm{p}=$ principal
- $r=$ interest rate
- $\mathrm{n}=$ number of compoundings in a year
- t = time (years)

Let's work together on the new worksheet
 problems

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?
$A=P\left(1+\frac{r}{n}\right)^{n t}$

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?

$$
\begin{array}{ll}
\mathrm{P}=\$ 650 & \mathrm{r}=1 / 5 \% \quad \mathrm{t}=10 \quad \mathrm{n}=1 \text { (annual) } \\
& \mathrm{r}=0.2 \%
\end{array}
$$

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?

$$
\begin{array}{rl}
P=\$ 650 & r=1 / 5 \% \quad t=10 \quad n=1 \text { (annual) } \\
r & r=0.2 \% \\
& r=0.002
\end{array}
$$

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?

$$
\begin{array}{rl}
P=\$ 650 & r=1 / 5 \% \quad t=10 \quad n=1 \text { (annual) } \\
r & =0.2 \% \\
r & =0.002
\end{array} \quad \begin{aligned}
& A=650(1+(0.002 / 1))^{\wedge}(1 \times 10)
\end{aligned}
$$

Worksheet Problem \#1

1.) Shalika puts $\$ 650$ into a savings account that pays $1 / 5 \%$ interest per year, compounded annually. What is the amount of money that she will have after 10 years?

$$
\begin{array}{rl}
P=\$ 650 & r=1 / 5 \% \quad t=10 \quad n=1 \text { (annual) } \\
r & =0.2 \% \\
r=0.002
\end{array} \quad \begin{aligned}
& A=650(1+(0.002 / 1))^{\wedge}(1 \times 10) \\
& A=663.1176262=\$ 663.12
\end{aligned}
$$

Worksheet Problem \#2

2.) Darien invests $\$ 10,000$ in an account that pays 1.10% interest per year, compounded biannually. What is the amount of money that he will have after 3 years?
$A=P\left(1+\frac{r}{n}\right)^{n t}$

Worksheet Problem \#2

2.) Darien invests $\$ 10,000$ in an account that pays 1.10% interest per year, compounded biannually. What is the amount of money that he will have after 3 years?

$$
P=\$ 10,000 \quad r=1.10 \% \quad t=3 \quad n=2
$$

$A=P\left(1+\frac{r}{n}\right)^{n t}$

Worksheet Problem \#2

2.) Darien invests $\$ 10,000$ in an account that pays 1.10% interest per year, compounded biannually. What is the amount of money that he will have after 3 years?
$A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{array}{ll}
P=\$ 10,000 & r=1.10 \% \quad t=3 \quad n=2 \\
& r=0.011
\end{array}
$$

Worksheet Problem \#2

2.) Darien invests $\$ 10,000$ in an account that pays 1.10\% interest per year, compounded biannually. What is the amount of money that he will have after 3 years?

$$
\begin{array}{rl}
P=\$ 10,000 & r
\end{array}=1.10 \% \quad t=3 \quad \mathbf{n}=\mathbf{2}
$$

$$
A=10,000(1+0.011 / 2)^{\wedge}(3 \times 2)
$$

Worksheet Problem \#2

2.) Darien invests $\$ 10,000$ in an account that pays 1.10\% interest per year, compounded biannually. What is the amount of money that he will have after 3 years?

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$$
\begin{array}{ll}
P=\$ 10,000 & r=1.10 \% \quad t=3 \quad n=2 \\
& r=0.011
\end{array}
$$

$$
A=10,000(1+0.011 / 2)^{\wedge}(3 \times 2)
$$

$$
A=10,334.57091=\$ 10,334.57
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$A=\$ 23,478.00 \quad r=0.55 \% \quad t=15 \quad n=4$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

$$
23,478=P(1+0.0055 / 4)^{\wedge}(4 \times 15)
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

$$
23,478=P(1+0.0055 / 4)^{\wedge}(4 \times 15)
$$

$$
23,478=P(1.085937135)
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

$$
23,478=P(1+0.0055 / 4)^{\wedge}(4 \times 15)
$$

$$
23,478=P(1.085937135)
$$

$$
\div 1.085 \ldots \quad \div 1.085 \ldots
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

$$
23,478=P(1+0.0055 / 4)^{\wedge}(4 \times 15)
$$

$$
23,478=P(\quad 085937135)
$$

$$
\div 1.085 \ldots \div 1.285 \ldots
$$

Worksheet Problem \#6

6.) Tanesha has $\$ 23,478.00$ in a savings account paying 0.55% interest compounded quarterly. If she initially opened the account 15 years ago and didn't add nor take out any money from the account since she opened it, how much money did she initially deposit into the account (again, we're finding the starting

$$
\begin{array}{ll}
A=\$ 23,478.00 & r=0.55 \% \quad t=15 \quad n=4 \\
& r=0.0055
\end{array}
$$

$$
23,478=P(1+0.0055 / 4)^{\wedge}(4 \times 15)
$$

$$
23,478=P(\quad 085937135)
$$

$$
\div 1.085 \ldots \div 1.085 \ldots
$$

$$
21,620.04=P
$$

$$
P=\$ 21,620.04
$$

Do Now

- Franklyn puts $\$ 2500$ into a savings account paying 1.45% interest compounded semi-annually. How much money will he have 20 years later?

Today's Objective:

- Students will calculate the total money at the maturation date for a Certificate of Deposit.

- BANK
 AFRICA

 Sidge SocialAv. Joseph Anom Av. Joseph Anoma

CERTIFICATE OF DEPOSIT

Suname of Depostor

otra hianes: phatippocs
nenita MARO
Nationsliy- Pruilppocs MT.PISSPORT NO yyobel Cocupation:

Deposit coder B A X X X X X (nust be suppled by the benehcay/depputor belore colection) This is to confirm frat the above named person with the above particutars have a deposit with Bga Aeyban core D'IVgIRE,

Certificates of Deposit

What is a CD??

- Certificate of deposit (CD) - a type of investment like a savings account, where the bank holds your money for a set neriod of time

What is a CD??

- Certificate of deposit (CD) - a type of investment like a savings account, where the bank holds your money for a set neriod of time

- You cannot remove your money during this time period - Interest rates are higher than for standard savings accounts
- The longer the term (time period) of the CD, the higher the interest rate
- The more money you put in a CD, the higher the interest rate

What is a CD?

CD maturation

- Maturation date - the date you are able to take out your money + earned interest
- If you take our your money early, you forfeit interest + you pay a penalty fee!!!

Let's compare interest rates

What did we learn today?

- Compound interest - interest that grows with the principal after each set increment of time
- Advantages of knowing compound interest:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

1.) It is used more often than simple interest.
2.) It produces more interest (and therefore more money!! ()) than simple interest.

Words to Remember:

- Certificate of Deposit (CD)

- Rate compounded daily
- APY (annual per year)
- Maturation date

() MEVASBank
 MEVAS BANK
 outenil noad centeut ananci
 Cettifiate Of Deposit

This is to certify that the Depositor...............................
of.
34 DERECH HASHALOM STREET, ONATAYM, ISRAEL

AC No::

on this day...ATM... of ... FEBRUARY. 2004
This Certificate is issuod in accordance with the Hong Kong Banking Act of 1968 The Depositon/Beneficiary is expected to present this certificate in the event of transfer of funds to any nominated account. Please you are to tender this Certificate only on request.

Exit Ticket

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

- Mr. Dukat puts $\$ 15,000$ into a CD paying 0.7% compounded quarterly. How much total money will he have in his account 23 years from now?

